Iwatani ALUMINA

精製された高純度アルミニウム・ペレットをイワタニ・プロセスで微粉末化。 これを焼成して作られるのがイワタニアルミナです。高純度のミクロン単位の 微粉末化にすることで、電気絶縁性強度に優れる等高い機能を発揮する物質と なり、様々な製品に応用されます。

RH-30、40 水酸化アルミニウム

イワタニ・プロセスによりアルミニウムから作られた、高純度の水酸化アルミニウム微粉末です。

RK-30、40 高活性アルミナ

水酸化アルミニウムを高温度で焼成した、脱水 直後のアルミナです。多孔質で比表面積が大きく、 活性に富み優れた吸着性を示します。

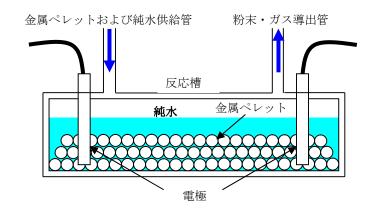
RG-30、40 活性アルミナ

水酸化アルミニウムを高温度で焼成したアルミナです。 ηアルミナと、θアルミナで構成されております。

RA-30, 40 α 7 μ > t

水酸化アルミニウムを高温度で焼成したαーアルミナです。

イワタニ・プロセスのメカニズム

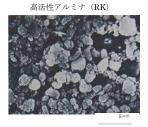

イワタニープロセスとは、火花放電法による ミクロンオーダーの微粉末の製造法です。 たとえば金属ペレット群を純水中で火花放電 させると、水を介して接する各ペレット間で多数 の放電点が形成されます。

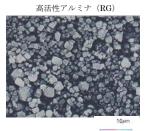
この放電点では、熔融、蒸発による金属の剥離減少と水の分解生成物と反応して、水酸化物や酸化物の微粉末になります。

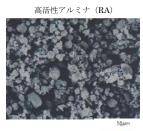
これらの微粉末は目的に応じ、さらに煆焼して 各種の金属酸化物とします。

この方法では一度金属の状態で純度をあげて おけば化学的方法や機械的方法と異なり、 製造過程では不純物が混入しないので、高純度を 維持したまま微粉末とすることができます。

また任意の組成の合金ペレットを原料として 火花放電すると、均一組成の複合酸化物を製造 することができます。


ISOマネジメントによる高品質なアルミナ




当社では、更なる品質向上をめざし、品質保証に関する 国際規格 I S O 9001 を承認取得しております。

イワタニ・アルミナは高性能化を要する広い分野で利用 され、産業の発展に寄与しております。

イワタニ高純度アルミナの品質代表値

イワタニ・プロセスにより高 い純度と品質により製造さ れるイワタニアルミナ。右に その品質代表値を表示させ ていただきました。

ぜひ上の顕微鏡写真と共に 参考にしていただき、ご検討 していただきたいと思いま す。

		水酸化アルミニウム Aluminum Hydroxide		高活性アルミナ Activated Alumina		活性アルミナ Activated Alumina		αーアルミナ α-alumina	
		RH-30	RH-40	RK-30	RK-40	RG-30	RG-40	RA-30	RA-40
	Al(%)	>99.9	>99.99	>99.9	>99.99	>99.9	>99.99	>99.9	>99.99
化	Fe	0.0100	0.0005	0.0150	0.0004	0.0150	0.0007	0.0150	0.0007
学	Si	0.0100	0.0013	0.0150	0.0018	0.0150	0.0018	0.0150	0.0018
組	Cu	0.0004	0.0001	0.0005	0.0001	0.0005	0.0001	0.0005	0.0001
成	Mg	0.0002	0.0001	0.0003	0.0001	0.0005	0.0001	0.0003	0.0001
	Ca	0.0002	0.0001	0.0003	0.0001	0.0003	0.0001	0.0003	0.0001
	Na	0.0004	0.0002	0.0005	0.0003	0.0005	0.0003	0.0005	0.0003
比表面積m²/g		200		150		48.0		3.5	
平均粒子径 μ m		1.35		0.70		0.51		1.00	

比表面積 : BET法 平均粒子径: 空気透過法

イワタニの高純度アルミナは次の目的で利用されています。

○高純度セラミック原料 ○蛍光体材料 ○ガラス原料 ○コーティング剤

○研磨絶縁材料 ○触媒 ○保護管 ○その他各種添加剤

岩谷化学工業株式会社

Iwatani Chemical Industry Co.,Ltd 〒520-3242 滋賀県湖南市菩提寺 327-14

Tel: 0748-74-0321 Fax: 0748-74-2469 URL: http://www.iwatani-chemi.co.jp/

E-mail: shiozawa@iwatani-chemi.co.jp

営業部東部グループ:塩澤

